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(57)	 ABSTRACT

A method for growth of an alloy for use in a nanostructure, to
provide a resulting nanostructure compound including at
least one of GexTey, InxSby, InxSey, SbxTey, GaxSby, Ge Sby,
Tez, InxSbyTez, GaxSeyTe , SnxSbyTez, InxSbyGez, GewSnxS-
byTe , Ge_SbxSeyTez, and Te_Ge SbySz, where w, x, y and z
are numbers consistent with oxidization states (2, 3, 4, 5, 6) of
the corresponding elements. The melt temperatures for some
of the resulting compounds are in a range 330-420° C., or
even lower with some compounds.

10 Claims, 4 Drawing Sheets
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GROWTH METHOD FOR CHALCONGENIDE

	
A bottom-up synthesis strategy provides a route to prepare

PHASE -CHANGE NANOSTRUCTURES	 various free-standing nanostructures, such as nanodots, nano-
tubes and nanowires. Some elements or binary compound 1 D

FIELD OF INVENTION
	

nanostructures have been synthesized by thermal evapora-
5 tion, laser-ablation, chemical vapor deposition ("CVD"), and

Use of group VI-based alloys, including mixtures of Te, Se 	 metalorganic chemical vapor deposition ("MOCVD"), etc.
and S with In, Ge, Sb, In, Ga and/or Sn, for growth of high- 	 methods. One of the challenging issues in the field of PCM
purity alloy nanostructures such as nanodots, nanowires and

	
nanostructures is thesynthesis of high-quality, high purity

nanorods, in large quantity,

	

	 Ge Sb Te ternary alloy nanowires and nanorods in large
io quantities.

BACKGROUND OF THE INVENTION

	

	
What is needed is a growth method and associated growth

materials for 1-D phase change nanostructures that provide a
Materials engineering at the nanometer scale can provide 	 relatively low melt temperature (e.g., T_,,t=400° C.) for

smaller devices than those currently available. Recently, one- 	 diameters of the order of 10-100 nanometers (mu), and nano-
dimensional ("1-D") nanostructures, such as wires, rods, 15 structures that can easily be grown at pressures close to stan-
belts, and tubes, have become the focal point of research in 	 dard, ambient pressures.
nanotechnology due to their fascinating properties. These
properties are intrinsically associated with low dimensional- 	 SUMMARY OF THE INVENTION
ity and small diameters, which may lead to unique applica-
tions in various nanoscale devices. It is generally accepted 20	 These needs are met by the present invention, which pro-
that 1-D nanostructures provide an excellent test ground for 	 vides a method for producing large quantities of 1-D nano-
understanding the dependence of physical, electrical, ther- 	 structures, such as nanowires and nanorods, of Ge Sb Te
mal, optical, and mechanical properties on material dimen- 	 alloys and similar alloys from compounds such as GeTe and
sionality and physical size. In particular, 1-D semiconductor

	
Sb2Te31 or Ge, Te and Sb element powders on any kind of

nanostructures, which exhibit different properties as com-  25 substrates, using a thin film or nanoparticles of at least one of
pared with their bulk or thin film counterpart, have shown

	
Au, Ni, Ti, Cr, In, Sb, Ge and Te as a growth catalyst. The

great potential in future nanoelectronics applications in data	 atomic ratio in the Ge---Sb—Te alloy nanowires depends on
storage, computing and sensing devices. Phase-change mate- 	 the mole ratio of Ge:Sb:Te in the starting mixture. For
rials ("PCMs") are among the most promising media for	 example, Ge2Sb2Te5 nanowires can be grown from the mix-
nonvolatile, re-writable, and highly durable data storage 30 ture of GeTe and Sb2Te3 with 2:1 mole ratio. The length of the
applications. Phase change materials based on the Ge—Sb- 	 1-D nanostructures depends upon the growth time applied.
Te multi-element alloy system have been extensively studied
and have been found to be suitable for optical and electrical

	
BRIEF DESCRIPTION OF THE DRAWINGS

memories. Among these alloys, Ge 2 Sb2Te5 ("GST") exhibits
the best performance when used in a phase change random 35 FIG. 1 is a schematic diagram of the thermal evaporation
access nonvolatile memory (PRAM), for speed and stability.	 apparatus used for nanowire growth in the present invention
GST demonstrates high thermal stability at room tempera- 	 (a) one-furnace system and (b) two-furnace system.
ture, high crystallization rate at high temperatures (can be

	 FIG. 2 is a scanning electron microscopy (SEM) micro-
crystallized in less than 50 nsec by laser heating pulse), and

	 graph showing the morphology of GST nanowires grown
extremely good reversibility between amorphous and crys-  40 from the mixture of GeTe and Sb2Te3.
talline phases (more than 10 6 cycles). In particular, resistive

	 FIG. 3 is a transmission electron microscopic image taken
switching PRAM, using GST thin film as a phase change

	 from GST nanowire grown from a mixture of GeTe and
material, provides faster write/read, improved endurance, and

	
Sb2Te31 with inset diffraction pattern.

simpler fabrication as compared with the transistor-based
	

FIG. 4 is a high-resolution transmission electron micro-
nonvolatile memories.	 45 scopic image indicating the atomic structure of GST nanow-

Although substantial improvements in the performance of
	

ire.
thin-film-based PRAM have been made over the past decade, 	 FIG. 5 is a scanning electron microscopy (SEM) image
a number of issues remain, most notably, large programming 	 showing the morphology of GST nanorods grown from the
current, limited cyclability and scaling problems when mov- 	 mixture of GeTe and Sb2Te3.
ing to increasingly smaller dimensions. There is particularly 50	 FIG. 6 is a transmission electron microscopic image taken
a concern about the crystalline-to-amorphous phase transi- 	 from GST nanorod grown from the mixture of GeTe and
tion when high current is required for material melting. The 	 Sb2Te3.
Joule heating effect may cause excessive power dissipation
and inter-cell thermal interference, presenting problems for

	
DESCRIPTION OF BEST MODES OF THE

further memory scaling.	 55	 INVENTION
The phase transition behavior of nanoscale GST may over-

come these limitations. The melting temperature T_,,, of GST
	

FIGS. lA and 1B are schematic diagrams of apparati that
nanowire (e.g., 385° C. for =80 mu diameter) is reduced from 	 can be used to produce GST nanowires using the disclosed
that of bulk GST (632° C.), a phenomenon consistent with a	 method. FIGS. lA and 1B show a one-furnace system and a
previous report for semiconductor nanocrystals that reports a 60 two-furnace system, respectively. The apparatus includes a
decrease ofTmett with decreasing nanocrystal size. The ther- 	 furnace with at least two temperature control regions 11-1 or
mal conductivity of a low-dimensional structure is also

	
11-2, an evacuated tube reaction chamber 12, a pumping

reduced relative to its bulk counterpart. The reduced Tmett, 	 system 13 and/or a high power laser 14 (optional). In one
reduced thermal conductance, and smaller material volume	 embodiment, Ge, Te and Sb vapors are generated in a tem-
jointly contribute to reduction of the threshold energy 65 perature range, T=300-950° C. by thermal heating or laser
required for structural phase transition in GST nanostruc- 	 ablating of a solid source. GST nanowires grow at T=330-
tures.	 550° C. on  substrate (e.g., Si, SiOx coatedon Si, Al2031 S'C'
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SiN or another substance that is stable up to at least T=550°
C.) with nanoparticles or a thin film (0.5-100 mu thickness) of
at least one of Au, Ni, Ti, Cr, In, Sb, Ge and Te deposited
thereon as a catalyst. During the growth period, the pressure
in the reaction chamber 12 should be maintained at pressures
p-1-800 Torr, and preferably atp=1-400 Torr. Generally, the
composition of the GST alloy is Ge SbyTez, where x, y and z
are appropriate numbers, for example, x=2, y=2, z=5.

FIG. 2 is a scanning electron microscopic image showing
the morphology of GST nanowires grown by this method.
The length of nanowires grown by this method depends on the
growth time; the nanowire length can extend to more than ten
micrometers (" µm") within several hours growth time. GST
nanorods (length <1 micrometer) can be obtained within one
hour. As illustrated in FIG. 3, the diameters of GST nanowires
are very uniform (10 run- 100 run, depending on the diameter
of the catalyst nanoparticles). An electron diffraction pattern
in the inset in FIG. 3 shows the perfect crystalline nature of
the wire.

One example of a growth mechanism for Ge Sb Te
alloy nanowires is a vapor-liquid-solid ("VLS") process. The
vapor phase containing Ge, Sb and Te generated from solid
sources, for example GeTe and Sb 2Te3 powders, by thermal
evaporation or other activation, is a key factor. The vapors of
Ge, Sb, Te are transported to the substrate area by an inert
carrier gas (He, Ne, Ar, Nz, etc.) and combined with An
catalyst particles to provide a liquid alloy at above-eutectic
temperatures. Continuous feeding of the liquid alloy droplet
increases Ge Sb Te concentration and eventually leads to
super-saturation, precipitation, and axial growth of a nanow-
ire of GST. This growth is independent of the nature of the
substrates.

In the present invention, generating Ge, Sb and Te in vapor
phase(s), by various methods, is a key point. Heating a pow-
der mixture of Ge, Sb and Te elements is a direct approach to
generate the vapor phase(s). Vapors of Ge, Sb and Te can be
generated by many other means, such as activating a mixture
of GeTe and Sb 2Te3 powders. This activation can be imple-
mented by laser ablation, thermal evaporation, plasma-as-
sisted excitation, etc. After the Ge, Sb and Te vapors are
produced, temperature and pressure control are imposed for
growth of nanostructures (nanowires, nanorods, nanotubes,
etc.). Ge, Sb and Te vapor phase can also be obtained directly
through Ge, Sb and Te gas phase compounds, such as GeH,
(CH3)3 Sb and (CH 3)2Te, respectively.

Although GexSbyTe serves as an example here, other alloy
materials can also be synthesized through the methods
described here, including but not limited to Ge Te y, InxSby,
In.Sey, Sb,Tey, GaxSby, GexSbyTe , In.SbyTez, GaxSeyTez,
Sn,SbyTez, InxSbyGez, Ge_SnxSbyTe , GewSbxSeyTez, and
Te_Ge,SbyS., where w, x, y and z are numbers consistent with
oxidization states (2, 3, 4, 5, 6) of the corresponding elements.

Several elements are candidates for constituents for a
binary, ternary or quaternary alloy for a phase change nano-
structure grown according to the procedures discussed herein.
These elements, and their corresponding oxidization states,
includes the following groups: (III-A) Al (oxidization state
3), Ga (3), In (3) and TI (1,3); (IV-A) Ge (4), Sn (4); (V-A) P
(3.4), As (3), Sb (3); and (VI-A) S (2, 4, 6), Se (2, 4, 6), Te (2,
4, 6). A more general prescription for a ternary compound
may be expressed as {Al or Ga or In or TI or Ge or Sn}x{P or
As or Sb}y{S or Se or Tel.. A more general prescription for a

4
quaternary compound may be expressed as {Ge or Sn}w{Ge
or Sn or Sb}x{P or As or Sb}y{S or Se or Tel..

Example 1
5

GST nanowires have been prepared in the apparatus as
shown in FIG. 1B. The substrate is silicon wafer or thermally
oxidized S'02 layered Si substrate, coated with 20 nm diam-
eter gold (Au) nanoparticles. An evacuated quartz tube of

10 diameter 2.54 cm is used as the reaction chamber in whichAr,
Nz, He or another inert gas (p=200 Torr) flows at 25-50 sccm.
A solid source of 0.1 gm mass includes a mixture of highly
pure GeTe and Sb2Te3 powders with a mole ratio of 2:1. The
temperature for many sources is in a range of 680-720° C., but

15 may be as low as 450° C. or as high as 1000° C., and substrate
temperature is 420-550° C. After 2 hours of growth, high-
density of GST nanowires were obtained on the substrate. The
morphology and microstructure of GST nanowires grown by
this method are shown in FIGS. 2-4.

20

Example 2

The same apparatus shown in FIG. 1B is used. The solid
source is Ge powder and Sb 2Te3 powder. The substrate is the

25 same as that used in Example 1. The temperatures around the
Ge source and Sb 2Te3 source are about 950° C. and 450-700°
C., respectively. GST nanowires grow at about 450-520° C.
Ar with 20 percent H z (200 Torr) flows at 25 sccm as carrier
gas. The growth time is about 1 hour. The morphology and

30 microstructure of the Ge Sb Te alloy nanowires are simi-
lar to that grown in Example 1.

Example 3

35 The same apparatus as shown in FIG. 1A is used. The solid
source and substrate are the same as that used in Example 1.
The temperature around the source is 450° C. and substrate
temperature is 335-375° C. Ar (20 Torr) flows at 70 sccm as
the carrier gas. The growth time is about 4 hours.

40
Example 4

The same apparatus used as in Example 1. The solid
source, substrate and all the experiment conditions (tempera-

45 ture, pressure, carrier gas and flow rate) are same as used in
Example 1. The growth time is about 45 minutes. The GST
nanorods are grown on the substrate. The morphology and
microstructure of GST nanowires grown by this method are
shown in FIGS. 5 and 6.

50 
The methods discussed in the preceding allow growth of

nanostructure compounds of one or more of IS and Se and
Tel, combined with one or more of {Al and Ga and In and TI
and Ge and Sb and Sul and combined with one or more of {P
and As and Sb}; or growth of nanostructure compounds of IS

55 
and/or Se and/or Te}, combined with one or more of {Ge and
Sn and Sb} and combined with one or more of {P and As and
Sb}. Some of the nanostructure compounds have relatively
low melt temperatures.

What is claimed is:
60	 1. A method for growth of an alloy for use in a nanostruc-

ture, the method comprising:
providing a substrate comprising Si, on which is deposited

at least one of (i) a thin film coating of An and (ii) a
spaced apart array of thin particles of at least one of An,

65 Ni, Ti, Cr, In, Sb, Ge and Te, having a thickness in a
range of 0.5-100 run, with a substrate temperature in a
range of about 330° C.-550° C., where at least a portion
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of the thin film coating or thin particle array serves as a
catalyst for growth of nanostructures on a selected sur-
face of the substrate;

providing at least first and second chemical sources, with
the first source comprising Ge_Tex and the second
source comprising SbyTe , where the numbers w, x, y
and z have substantially the ratios w:x and y:z=2:2 and
2:3, respectively, and where the first and second sources
each have source temperatures in a range 450°
C.^T-720° C., adjacent to the substrate;

allowing at least a portion of the first source and at least a
portion of the second source to become first and second
vapors, respectively, and to combine to form a resulting
vapor comprising GeP SbgTe,,, where p, q and r are posi-
tive numbers in ranges permitted by oxidization states
associated with the respective elements Ge, Sb and Te,
where the numbers p, q and r have substantially theratios
p:q:r=2:2:5; and

exposing the selected surface of the substrate to the vapor
comprising GePSbgTe,, for a selected time interval,
whereby at least one nanostructure is grown on the
selected surface.

2. The method of claim 1, further comprising choosing said
numbers p, q and r so that said nanostructure has a melt
temperature no more than about 500° C.

3. The method of claim 1, further comprising choosing said
numbers p, q and r so that said nanostructure has a melt
temperature no more than about 400° C.

4. The method of claim 1, further comprising choosing said
at least one nanostructure to be at least one of a nanowire, a
nanorod and a nanotube.

5. The method of claim 1, further comprising choosing said
substrate to comprise at least one of Si, SiOx coated Si
(Lx-2), Al2031 SiC and SiN.

6. A method for growth of an alloy for use in a nanostruc-
ture, the method comprising:

providing a substrate comprising Si, on which is deposited
at least one of (i) a thin film coating of An and (ii) a
spaced apart array of thin film islands of particles of at
least one of Au, Ni, Ti, Cr, In, Sb, Ge and Te, having a
thickness in a range of 0.5-100 mu, with a substrate
temperature in a range of about 330° C.-550° C., where

6
at least a portion of at least one of the thin film islands
serves as a catalyst for growth of nanostructures on a
selected surface of the substrate;

providing at least first and second chemical sources, with
5 the first source comprising a first combination of (i) at

least one of Ge, In, Sb, Ga, Sn, Te, Se and S and (ii) at
least one of Te, Se and S, and the second source com-
prising a second combination of (iii) at least one of Ge
and Sb, and (iv) at least one of Te, Se and S, where the

10	 first and second sources each have source temperatures
in a range 450° C.^T^1000° C., adjacent to the sub-
strate;

allowing at least a portion of the first source and at least a
portion of the second source to become first and second

15	 vapors, respectively, and to combine to form a resulting
vapor comprising at least one of Ge ,Tey,, Inx2Sby21
Inx3 Sey3,	 Sbx4Tey4,	 Gax5Sby5,	 Ge 6Sby6 Tez6,
In,7Sby7Te 7,	 Gax$Sey$Te,71	 SngSby9Tez9,
In., 'SbyloGe lo, where wa, xa, yb and zb (a=1-10, b=6-

20 10) are numbers consistent with oxidization states (2, 3,
4, 5, 6) of the corresponding elements and have substan-
tially the ratios xl:yl=1:1, x2:y2=1:1, x3:y3=2:3,
x4:y4=1:3, x5:y5=1:3, x6:y6:z6=2:2:5, x7:y7:z7=1:1:2,
x8:y8:z8=2:3:2 orx8:y8:z8=2:2:3, x9:y9:z9=2:2:5, and

25	 x10:y10:z10=2:2:3; and
exposing the selected surface of the substrate to the result-

ing vapor for a selected time interval, whereby at least
one nanostructure is grown on the selected surface.

7. The method of claim 6, further comprising choosing said
30 first and second combinations so that said nanostructure has a

melt temperature no more than about 500° C.
8. The method of claim 6, further comprising choosing said

first and second combinations so that said nanostructure has a
melt temperature no more than about 400° C.

35 9. The method of claim 6, further comprising choosing said
at least one nanostructure to be at least one of a nanowire, a
nanorod and a nanotube.

10. The method of claim 6, further comprising choosing
said substrate to comprise at least one of Si, SiOx coated Si

40 (1-x-2), Al2031 SiC and SiN.
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